AfriNREN

Visualising traffic and network structure of African NRENs

Supervisor: Josiah Chavula Co-Supervisor: Hussein Suleman

Rob Passmore, Roslyn Sanby, Chantal Yang

What is an NREN?

- National Research and Education Network
 - interconnect institutional networks

• Aims of NRENs:

- provide connectivity
- reduce latencies
- promote bandwidth sharing
- improve traffic engineering

What are we doing?

- Collection of accurate network data
- Visualisations for analysis and use
- Web application

Why is this important?

- Internet collaboration
 - Transferring radio astronomy data
 - Knowledge sharing through videoconferencing and content sharing

https://www.skatelescope.org/multimedia/image/ska-mid-africa-close-up/

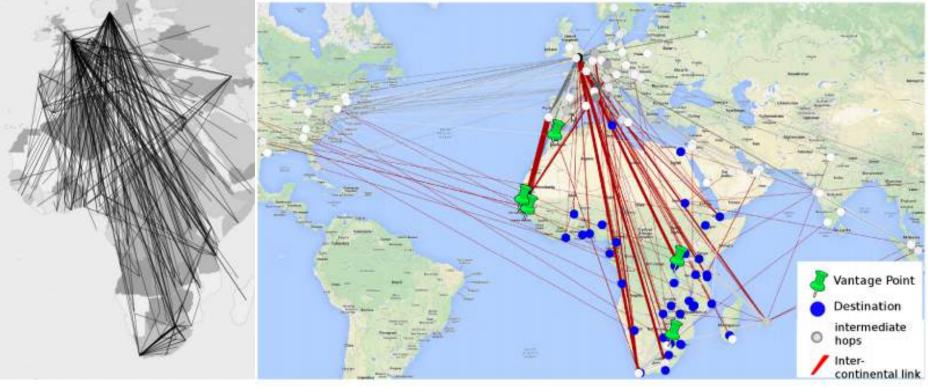
What is the Problem?

 75% of traffic travel circuitous inter-continental routes
 high latencies

- NRENs exchange large amounts of data across borders
- Little research done on quantifying amount or nature of traffic exchanged within and between NRENs

Proposed Solution

A *network visualisation tool* for our stakeholders that generates and *displays collected network traffic data* and topology information through a web application.


Separation of project

1. Data collection, evaluation and formatting

2. Visualisation of this data:

- Geospatial Visualisation
- Non-geospatial Visualisations

Related Work

Gilmour et al. 2007

Chavula et al. 2014

NetFlow Data

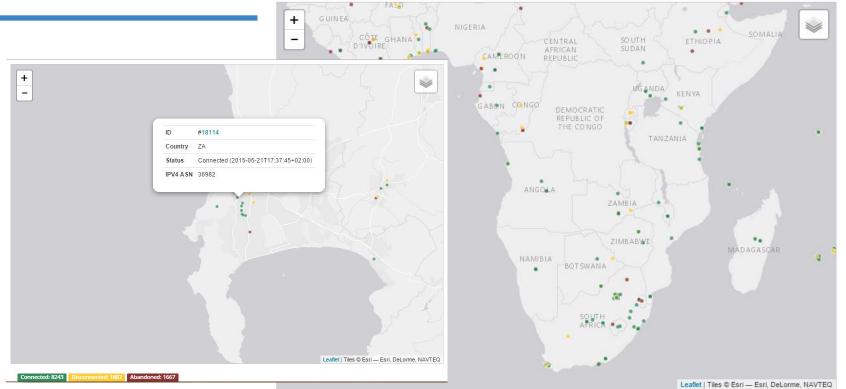
• Network traffic logs

Use

- to see where data is exchanged
- to calculate bandwidth
- as input to choose vantage points

Research Question

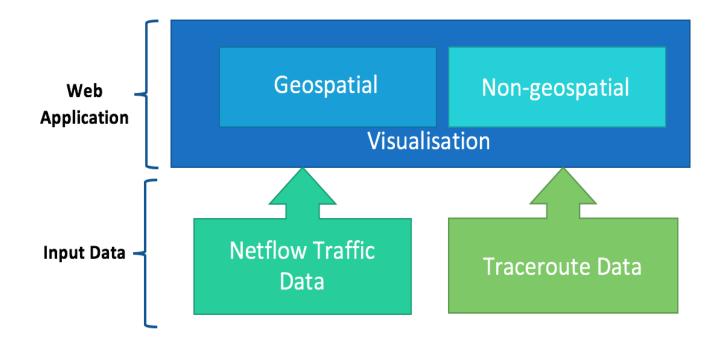
Can one *reliably* and *efficiently collect traceroute data* for this purpose


- increasing the accuracy of these measurements
- and reducing the number of measurements to perform?

https://atlas.ripe.net/about/

Vantage Points

https://atlas.ripe.net/results/maps/network-coverage/


Measurements

- ICMP/UDP/TCP
 - Different protocols show different topologies
- Normal vs Paris traceroute
 to compare different results

Challenges

- Graph analysis to choose which traceroutes to run to increase efficiency of collection
- Measure accuracy of traceroutes
 - compare with other tools and published results
 - get users to check for false or missing links
- Aggregate data to make most useful for visualisations

Visualisation

Visual Queries

Visual Query:

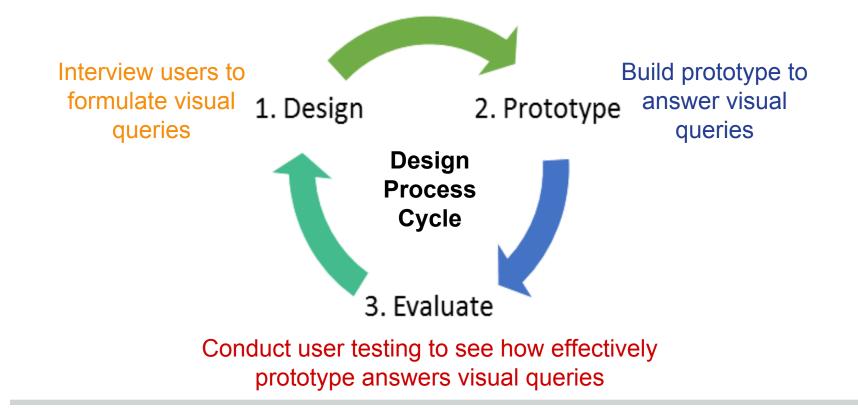
An information need that is addressed by a visualisation.

Some initial visual queries:

- Which institutions exchange large quantities of data for research purposes?
- What route does traffic take between A and B?
- Does traffic between A and B travel along circuitous intercontinental routes?

Dimensions of Data to Display

- Network Structure
- Latencies of traffic
- Traffic flow from one institution to another
- Bandwidth utilisation of links between NRENs


Visualisation Implementation

Frameworks for implementation:

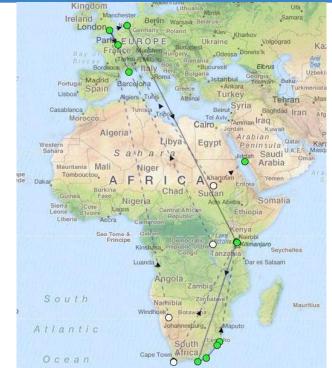
- D3.js
- Processing language and Processing.js
- AmCharts.js

Methodology: User-Centred Design

User Testing

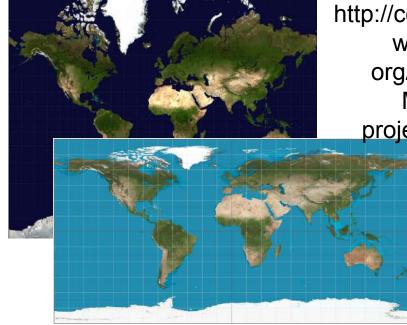
Preliminary user testing will be done with the help of CS students with knowledge of Networks.

Users:


- UCT Network Admins
- NREN CTOs
- UbuntuNet Alliance Policy Makers

Geospatial Visualisation

Research Question:


Can a *geospatial visualisation* effectively and accurately communicate the network topology and network traffic information of African NRENs, allowing users:

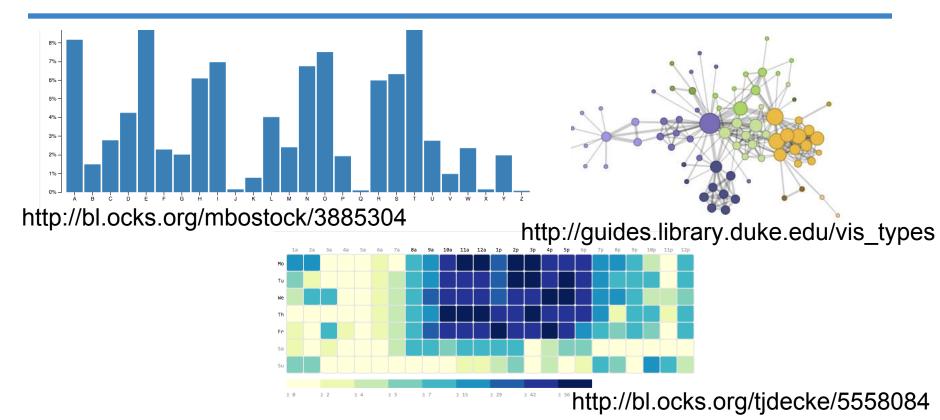
- to identify these networks
- where they connect
- what routes this traffic traverses?
 https://atlas.ripe.net/measurements/2017414/#!openipmap

Challenges

- Map Projections:
 Mercator Projection
 - Equirectangular
 Projection
- Clustering/Occlusion: Large amounts of data in a single area obscures information

http://commons. wikimedia. org/wiki/File: Mercatorprojection.jpg

http://goo.gl/iMOT2o


Interactivity Techniques

Category	Show me	
Select	what I've marked	
Explore	something different	
Reconfigure	a different arrangement	
Encode	a different representation	
Abstract/Elaborate	more or less detail	
Filter	something conditionally	
Connect	the related things	

Evaluating Effectiveness of Visualisations

- Visual Queries
- Heuristics
 - Task Performance Metrics (eg. Time, Task Success)
- Simple User and Group Statistics

Interactive Non-geospatial Visualisations

Research Question

Can a dashboard of *interactive non-geospatial visualisations* of network topology and NetFlow data effectively communicate latencies and network traffic information about a network to the network managers?

Challenges

- Display high-dimensional data
- Use of space to communicate data
- Design effective contextual view
- Design the interactivity features

Web Application Implementation

SQLAIchemy PostgreSQL

- Python
- Flask web development framework
- SQLAIchemy ORM tool-set
- PostgreSQL

Expected Outcomes

Key Features of Web-application

- Two Visualisation types: Geospatial and non-geospatial
- Topology and traffic data visualised
- Interactivity: Selection, Explore, Reconfigure, Encode, Abstract/Elaborate (Zoom), Filter, Connect

Expected Outcomes

Key Success Factors

- User can successfully answer their specified visual queries
- Links constructed from traceroute measurements are verified by expert users

Ethical and Legal Issues

- Consent from users during user testing
- Terms of Use of Netflow data from participating institutions
- Professional confidentiality when handling data

References

Chavula, J., Feamster, N., Bagula, A., & Suleman, H. 2014. Quantifying the Effects of Circuitous Routes on the Latency of Intra-Africa Internet Traffic: A Study of Research and Education Networks. in Proceedings of the AFRICOMM conference, (Uganda, 2014), AFRICOMM,1-10.

Fryer, T., Research and Education Networks around the World and their Use. in *Segunda Conferencia de Directores de Tecnología de Información,* (Lima, 2012), Red Clara, 1-13.

Gilmore, J. S., Huysamen, N. F., & Krzesinski, A. E. 2007. Mapping the african internet. in *Proceedings Southern African Telecommunication Networks and Applications Conference (SATNAC), (Sept 2007), Mauritius,* South African National Research Foundation.

References continued

Gupta, A., Calder, M., Feamster, N., Chetty, M., Calandro, E., & Katz-Bassett, E. 2014. Peering at the Internet's frontier: A first look at ISP interconnectivity in Africa in *Passive*

- Shavitt, Y., & Weinsberg, U. 2009. Quantifying the importance of vantage points distribution in internet topology measurements. In *INFOCOM 2009, IEEE*. 792-800.
- Shneiderman, B. 1996. The eyes have it: A task by data type taxonomy for information visualizations. in *Visual Languages, 1996. Proceedings., IEEE Symposium on,* IEEE, 336-343.
- Ji Soo Yi, Youn Ah Kang, John Stasko, and Julie Jacko. 2007. Toward a deeper understanding of the role of interaction in information visualization. *IEEE Trans. Vis. Comput. Graph.* 13, 6 (2007), 1224–31. DOI:http://dx.doi.org/10.1109/TVCG. 2007.70515

Risks

<u>Risk</u>	Probability	Impact	<u>Mitigation</u>
Loss of Team Member	Low to Medium	High	Adequate separation of project
Scope Creep	Medium	High	Set a realistic scope that is agreed upon by all stakeholders of the project.
Load shedding	High	Medium to High	Save work regularly, charge laptops.
Loss or Corruption of Data	Low to Medium	High	Backup data regularly across multiple devices.

Project Timeline & Deliverables

Deliverable	Due Date
Initial Feasibility Demonstration	20-24 July 2015
Final Complete Draft of report	16 October 2015
Project Report Final Submission	26 October 2015
Poster	2 November 2015
Website	9 November 2015
Reflection Paper	13 November 2015